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The autocorrelation function for the electric field at an impurity ion in a plasma is considered. A simple
model is constructed that preserves the exact short time dynamics and the long time global constraint of a given
self-diffusion coefficient. The input required is the initial value of the autocorrelation function and its deriva-
tives, and the self-diffusion coefficient. These are calculated from the hypernetted chain equations for corre-
lation functions and a ‘‘disconnected’’ approximation for the self-diffusion coefficient. A comparison of the
predictions of the model for the electric field autocorrelation function with results from molecular dynamics
simulation shows good agreement over a wide range of plasma coupling, impurity ion charge, and impurity ion
mass. This provides justification for a simple interpretation of electric field dynamics in terms of three collec-
tive modes.@S1063-651X~96!00309-1#

PACS number~s!: 52.25.Vy, 52.25.Gj, 52.65.2y, 05.40.1j

I. INTRODUCTION

An impurity ion embedded in a plasma serves as an im-
portant probe of charged particle dynamics through both its
radiative and transport properties. The dominant coupling
between the impurity ion and the surrounding plasma is
through the total electric field of the plasma,E(t), at the ion
~force on a charged ion, dipolar coupling to both neutral and
charged ions!. Determination of the probability distribution
for a chosen field value in an equilibrium plasma~the ‘‘mi-
crofield distribution’’! is a well-studied problem with accu-
rate and practical means for calculation@1#. In contrast, the
dynamics of the electric field is not well understood even at
a qualitative or phenomenological level. Recently, some
progress has been made for the case of electric fields at a
neutral point@2–5#. Detailed calculations and simulations of
the electric field dynamics as a function of time and initial
field value at a neutral point@6# show a number of unex-
pected features: long time algebraic decay, a possible in-
crease at short times, and qualitative failure of the stochastic
model microfield method@7#. These results show that some
care must be used in the representation of field dynamics in
more complex analyses such as spectral line broadening cal-
culations.

The objective here is to extend these studies of electric
field dynamics to the case of charged impurity ions. The
physics is quite different from that for the neutral case since
the presence of the charged ion significantly changes the
charge distribution of the plasma in the vicinity of the ion.
As a first study, we limit attention to the simplest dynamical
property, the electric field autocorrelation function
C(t)5^E(t)•E&/^E2&, where the brackets denote an equilib-
rium ensemble average. A simple model is constructed to
incorporate the most important symmetries of the correlation
function and its relationship to structural and transport prop-
erties. For example, the time integral ofC(t) must vanish
exactly as a consequence of the field being proportional to

the total force on the ion. For similar reasons, there is a
simple exact relationship to the ion velocity autocorrelation
function, D(t)[^v0(t)•v0&/^v0

2&, and consequently to the
self-diffusion coefficientD through an exact Green-Kubo re-
lation. Finally, effects of the induced charge distortion near
the impurity ion are incorporated through the exact initial
condition and first two time derivatives ofC(t) at t50.

The model is constructed from a formally exact equation
for D(t). This equation describes the linear response of the
ion to an initial perturbation of its velocity, and provides a
clear interpretation of the dynamics as damped oscillatory
motion in a viscoelastic medium. The complex many-body
dynamics is hidden in a ‘‘memory’’ function which is ap-
proximated here by simple exponential relaxation. The time
scale for this relaxation is fixed by the above-mentioned ex-
act relationship betweenD(t) and the self-diffusion coeffi-
cientD. The resulting equation can be solved to determine
bothD(t) andC(t) as a function of the self-diffusion coef-
ficient and the initial data. The latter are expressed as inte-
grals of the time independent correlation functions for the
charge distribution around the ion and are computed here
using the HNC integral equations@8#. The self-diffusion co-
efficient is calculated using the ‘‘disconnected’’ approxima-
tion @9#. None of these approximations impliesa priori any
limitations with respect to plasma coupling strength, ion
charge, ion mass, or time scale. Consequently, the model is a
good candidate for the description of electric field dynamics
over a wide range of conditions.

The time dependence of this model can be expressed as a
linear combination of three exponentials, or modes, allowing
a simple interpretation of the relevant plasma excitations re-
sponsible for electric field dynamics. At weak coupling all
three modes represent purely damped excitations, while at
strong coupling there is one damped mode and a complex
conjugate pair of damped propagating modes. The conditions
of ‘‘weak’’ or ‘‘strong’’ coupling depend on plasma cou-
pling, charge, and mass. To limit the parameter space, we
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consider the simplest case of a one component plasma~OCP!
with ions of the same sign charge in the classical limit. The
relevant parameters are then the OCP coupling constant
G5bq2/a, the charge ratioq0 /q, and the mass ratio
m0 /m, wherea is the ion sphere radius,b51/kBT, and pa-
rameters with subscript 0 refer to the impurity ion. Also, we
consider both a OCP with Coulomb interactions and one
with screened interactions. Density and temperature condi-
tions are limited to the experimentally interesting case of
screening by nondegenerate, weakly coupled electrons@10#.
The case of a quantum plasma with charges of opposite sign
from that of the impurity, and its connection to the problem
of stopping power@11#, will be discussed elsewhere.

The approximation described here forC(t) is a special
case of a more comprehensive approximation constructed for
calculating general functions ofE(t) that cannot be ex-
pressed in terms ofC(t) alone@12#. An important objective
and emphasis of that work was to calculate the effects of ion
motion on spectral line broadening by plasmas. Subsequent
applications have demonstrated the importance of ion motion
effects and the good agreement between that model and com-
puter simulations of spectral lines@13#. The objective of the
present work is to isolate the simplest features of electric
field dynamics from the complexities of that general context
for a clear interpretation, analysis, and comparison with
computer simulations as a function of the above parameters.
Details of the simulation method are described in the next
section.

In the next section, the model is described briefly and its
predictions analyzed for the case ofq0 /q5m0 /m51. The
three modes of excitation are studied as a function ofG.
Comparison with computer simulation results shows good
agreement even at strong plasma coupling for both Coulomb
and screened interaction. In Sec. III the dependence of the
modes onq0 /q and m0 /m is considered. The results are
summarized in the final section and a practical means for
estimating the diffusion coefficient from simulation data us-
ing this model is proposed.

II. A SIMPLE MODEL

The system considered is an impurity ion of massm0 and
chargeq0 at equilibrium with a fully ionized plasma of point
~structureless! ions. The electric field at the impurity ion due
to the plasma consitutents is given by

E5(
a

(
i51

Na

ea~r i2r0!1Eb , ~1!

whereNa is the number of ions of speciesa, ea(r i2r0) is
the field due to the plasma ion at a distancer i2r0 from the
impurity ion, andEb is the field from the uniform neutraliz-
ing background charge. The equilibrium autocorrelation
function is defined by

C~ t ![^E~ t !•E&/^E2&, ~2!

where the bracketŝ& denote an equilibrium Gibbs ensemble
average. As noted in the Introduction, this function plays a
central role in many theories of radiative processes in plas-

mas. A closely related function relevant for transport prop-
erties is the velocity autocorrelation function

D~ t !5^v0~ t !•v0&/^v0
2&, ~3!

wherev0 is the impurity ion velocity. The correlation func-
tion C(t) measures fluctuations in a collective property of
the OCP, whileD(t) measures fluctuations in a single par-
ticle property. However, they are related directly by New-
ton’s first law,

]2D~ t !

]t2
52v0

2C~ t !, v0
25~bq0

2/3m0!^E
2&. ~4!

The interpretation of our model is more direct in terms of
D(t). First, a formally exact equation is derived using the
projection operator technique~see Appendix A!,

]2D~ t !

]t2
1v0

2D~ t !1E
0

t

dtM ~ t2t!
]D~t!

]t
50, ~5!

M ~0!5v1
22v0

2 , v1
25^Ė2&/^E2&, ~6!

whereb[kBT. Equation~5! describes the impurity ion dy-
namics as oscillations in a viscoelastic medium, where the
characteristic frequency isv0 and a frequency dependent
damping given by the Fourier transform ofM (t). All many-
body effects of the medium on the impurity ion that are not
explicit in ~5! are contained in the detailed form ofM (t)
@15#. Our fundamental assumption here is that it is sufficient
to include only the magnitude of this function through its
exact initial valueM (0) and a characteristic time scale for its
decay@16#. Consequently,M (t) is approximated by

M ~ t !→M ~0!e2lt. ~7!

The precise form forl is fixed by the Green-Kubo expres-
sion for the self-diffusion coefficientD in terms of the ve-
locity autocorrelation function@15#,

bm0D5E
0

`

dtD~ t !. ~8!

Use of~5! with ~7! to determine the right side of~8! gives the
identification@see Eq.~D3! of Appendix D#,

l5~v1
2/v0

221!/~bm0D !. ~9!

Equations~5!–~7! and ~9! define the approximate model for
D(t) and, through~4!, the electric field autocorrelation func-
tion. By construction,D(t) andC(t) determined in this way
are exact through orderst4 and t2, respectively, at short
times. Furthermore, the exact time integrals ofC(t) and
D(t) are assured through~4! and ~8!. The input datav0,
v1, andD might be taken directly from computer simulation.
Alternatively, as discussed below, additional independent ap-
proximations may be introduced to allow practical calcula-
tion of these parameters.

To interpret these parameters, consider conditions such
that l/v0@1. ThenM (t) decays rapidly in Eq.~5! and the
equation simplifies to
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]2D~ t !

]t2
1v0

2D~ t !1g
]D~ t !

]t
50, ~10!

g5~bm0D !v0
2 . ~11!

The damping constant relative to the characteristic fre-
quency,g/v0, determines whether the solutions are a pair of
oscillatory functions~underdamped!, or two real exponential
functions ~overdamped!. This is controlled by the depen-
dence onq0 /q, m0 /m, andG as illustrated in the following.
More generally, ifl/v0 is not large the medium exhibits
‘‘memory’’ and the damping is modified on time scales of
the order ofl21. Thus there are only three parameters~fre-
quencies! that completely characterize the dynamics of the
model,v0, g, andl.

It is straightforward to calculate the solution to~5! by
Laplace transform, yieldingD(t) and C(t) as the sum of
three exponentials,

D~ t !5(
i51

3

Die
Zi t, C~ t !5(

i51

3

Cie
Zi t, ~12!

where the coefficientsDi andCi are given by

Di52~v0 /Zi !
2Ci , ~13!

C15~l1Z1!Z1~Z32Z2!/D,

C25~l1Z2!Z2~Z12Z3!/D,

C35~l1Z3!Z3~Z22Z1!/D,

D[~Z12Z2!~Z22Z3!~Z32Z1!, ~14!

and the$Zi% are solutions to the cubic equation,

Z31lZ21v1
2Z1lv0

250. ~15!

Depending on the values ofl, v0, andv1, the solutions may
be real or complex.

To evaluate the quality of the predictions from this model
we have performed corresponding molecular dynamics simu-
lations for comparisons. Such simulations have been used
recently to provide statistical information about static as well
as dynamic properties of electric fields for both charged@14#
and neutral points@6#. As for standard molecular dynamics
simulations for neutral particles, a few hundred particles in-
teracting via a screened Coulomb potential move in a cubic
box with periodic boundary conditions, maintaining the sys-
tem in a stationary state of fixed temperature and density.
The results referred to as the ‘‘screened case’’ correspond to
a Debye screening length@10# . The results referred to as the
‘‘Coulomb case’’ are represented as the limit of a very large
screening length~typically one-half the system size!. These
latter results have been checked against those for the pure
Coulomb case~no screening! using Ewald sums instead of
the simple periodic boundary conditions, for both the pair
correlation function and the electric field autocorrelation
function. There are specific problems arising from the calcu-
lation of the field at a single impurity ion whenq0Þq and
m0Þm due to the poor statistics of a single test particle
history for each simulation. This increases the computer time

but the strong coupling conditions are a compensating fea-
ture. For example, the local changes induced by the test par-
ticle for q0 /qs1 lead to more rapid convergence of the
electric field correlation function than forq0 /qa1.

The analysis to this point applies for arbitrary plasma
composition. To illustrate the physical content of the model
we consider the special case of a one component plasma with
an impurity ion of the same mass and charge as those for the
plasma ions. In this case there is only one dimensionless
parameter characterizing the plasma state condition,
G[q2b/a, wherea[(3n/4p)1/3 is the average interparticle
distance~ion sphere radius!, and n is the plasma density.
Table I shows theG dependence ofv0 ,v1 ~in units of the
OCP plasma frequencyvp , defined byvp

2[4pnq2/m), and
D*5D/(a2vp) for both Coulomb and screened interactions.
The calculation and approximations used are described in
Appendix B. From these results it follows thatg/v0 varies
inversely withG. Consequently, we expect underdamped os-
cillatory motion at strong coupling and purely damped
modes at smallG.

Consider first the case of Coulomb interactions. Figure 1
shows the real and imaginary parts of the three solutions to
~15! as a function ofG. For smallG all three are real and
negative, representing purely damped excitations. The modes

TABLE I. G dependence ofv0, v1, andD* for Coulomb inter-
action and screened interaction (ka51); q05q andm05m. Diffu-
sion coefficientsD* andD

*
scr are given in units ofvpa

2.

G v0 v0
scr v1 v1

scr D* D
*
scr

0.2 0.577 0.559 34.00 36.97 33.51 53.90
0.5 0.577 0.544 9.767 11.07 5.932 8.713
1 0.577 0.530 4.436 5.137 1.893 2.645
2 0.577 0.517 2.443 2.760 0.681 0.904
5 0.577 0.502 1.528 1.568 0.216 0.267
10 0.577 0.493 1.268 1.202 0.115 0.131

FIG. 1. Solutions to Eq.~15! for the model of Coulomb inter-
action withq05q andm05m. Curves 1–3—real parts of solution;
curves 4–6—imaginary parts.
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are widely separated in magnitude so that at times long com-
pared to the inverse plasma frequency the dynamics of
C(t) andD(t) is governed by a single exponential in time,
with a relaxation time;5/vp . The amplitude of this mode
in C(t) is negative, to ensure that the time integral of the
correlation function vanishes. At very short times all three
modes contribute, as is required in order to fit the exact ini-
tial t2 behavior of both correlation functions. Thus the elec-
tric field autocorrelation function decreases from unity ac-
cording to Gaussian-like decay for very short times, followed
by two exponentials with the positive amplitude dominating
at intermediate times and the negative amplitude dominating
at long times. This qualitative behavior persists asG in-
creases until a critical value,G;1.5, is reached at which the
two most strongly damped modes coalesce to form a com-
plex conjugate pair of damped propagating modes. The fre-
quency of oscillation increases withG rapidly to a saturation
value at the plasma frequency. The damping of these propa-
gating modes decreases to become comparable with that of
the third purely damped mode. Thus forGs1.5 the dynam-
ics of C(t) andD(t) is qualitatively different from that at
smallG, except for asymptotically small times. This is illus-
trated in Fig. 2 for the strong coupling value ofG55. Also
shown are the results from computer simulation. The agree-
ment is excellent at short times and quite reasonable at
longer times. Generally, the agreement is better atG51 with
significant differences apparent forGs10. In spite of the
direct relationship ofC(t) to D(t), these figures show that
the dynamical features at stronger coupling are displayed
more directly through the electric field autocorrelation func-
tion. ForGa1.5 these differences are not so strong.

The results are qualitatively similar for screened interac-
tions. Figure 3 shows the results for the same strong coupling
conditions as in Fig. 2, except now for Debye screened in-
teractions. Finally, Fig. 4 compares the Coulomb and
screened cases with the corresponding molecular dynamics

results at the extreme coupling ofG510. While there are
significant differences relative to the simulation results at
longer times, the model is still accurate up tot;3vp

21 and
preserves the qualitative effects of screening at all times.

III. CHARGE AND MASS DEPENDENCE

The analysis of the preceding section suggests that this
simple model captures the dominant mechanisms responsible
for electric field dynamics. In this section we consider effects
due to variation of the impurity ion charge and mass relative
to that of the OCP ions. Attention is restricted to the more

FIG. 2. Time dependence of the electric field correlation func-
tion ~curve 1! and the velocity autocorrelation function~curve 2! for
the case of Coulomb interaction withG55. Time is given in units
of vp

21 . Points: MD simulation results.

FIG. 3. Same as Fig. 2 for the screened interaction with screen-
ing parameterk51 (k is given in units of inverse ion spacing,
a21). Points: MD simulation results.

FIG. 4. Time dependence of electric field correlation function
for the model of Coulomb interaction~curve 1! and Debye screen-
ing (k51, curve 2! at G510. Points: MD simulation results.
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realistic case of screened interactions. This dependence can
be understood in terms of the model through the correspond-
ing dependence of the three parametersv0, g, andl. From
the results of Appendix B it is seen that the dominant depen-
dence ~in units of the plasma frequency! is given by v0
}(mq0 /m0q)

1/2, g/v0}(mq/m0q0)
1/2G21, and l/v0

}(g/v0)G
23/2. This dimensional analysis confirms the re-

sults of the preceding section, that the damping is weakest at
strong coupling,Gs1. Similarly, the damping is expected to
decrease with increasingm/m0 and increasingq/q0, al-
though it is via a weaker square root dependence.

Consider first the variation with charge atm0 /m51. For
large G only small values ofq0 are required to span the
domain from weak to strong damping; conversely, for small
values ofG large values ofq0 /q are required to reach strong
coupling. In the former casev0

2 remains small and plays
little role in the qualitative features of the modes. In this case
the dependence of the modes onq0 /q at fixedG should be
similar to their dependence onG at fixed q0 /q in Fig. 1.
Figure 5 confirms this expectation for the case ofG55. As
expected for this value ofG the modes show the strong cou-
pling oscillatory behavior for allq0 /q>0.2. However, for
smallG it is necessary to consider large values ofq0 /q and
the effects of variation ofv0

2 with the charge become impor-
tant. This is illustrated in Fig. 6 forG50.2. SinceG is de-
creased by a factor of 25 relative to Fig. 5 a corresponding
scale change of the charge is required to show the transition
to strong coupling. Note that nowl is large and there are
qualitative differences between Figs. 5 and 6. For example,
in Fig. 6 the smaller two modes combine to form a propa-
gating pair for increasingq0 /q, while it is the larger two
modes that combine in Fig. 5. Figure 7 shows the field cor-
relation function forG55 and the two cases ofq0 /q50.2
and 2. The former corresponds to weak coupling~three real
modes! with monotonic crossover from a short time positive
domain to a larger long time negative domain, as discussed
in Sec. II above. The latter corresponds to strong coupling
with two oscillatory and one damped mode. Differences be-

tween the model and computer simulation results are ex-
pected in this case since the coupling is comparable to that of
Fig. 4.

The above variations with respect toG andq0 /q reflect
different degrees of coupling between the impurity ion and
the OCP. The mass dependence is somewhat different. It
appears in the same way as forq0 /q in both g/v0 and
l/v0 but with an inverse relationship forv0. It is instructive
to consider first the limitm0 /m→`. The analysis is given in
Appendix D. First, the self-diffusion coefficient approaches a
finite limit given by an exact Green-Kubo relation that is
applicable only for infinitem0,

D21→b2q0
2^E2&E

0

`

dt lim
m0/m→`

C~ t !. ~16!

FIG. 5. Solutions to Eq.~15! as a function ofq0 /q for the model
of screened interaction atG51 andk51; m05m.

FIG. 6. Same as Fig. 5 atG50.2 andk51.

FIG. 7. Time dependence of the electric field correlation func-
tion for the case of screened interaction withG55 andk51. Curve
1—q052q; curve 2—q050.2q. Points: MD simulation results.
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Note that while the time integral ofC(t) vanishes for any
finite m0 /m, it is nonvanishing in the ordered limit of~16!.
The frequenciesv1 andl also approach finite limits, while
v0→0. The electric field autocorrelation function is obtained
from ~12! and ~13!, with the simpler results,

C~ t !5~Z12Z2!21$~l1Z1!eZ1t2~l1Z2!eZ2t%,
~17!

Z65
1

2
l2$16@124~v1 /l!2#1/2%. ~18!

This analysis suggests that form0 /m;1 the mass depen-
dence is dominated byv0, proceeding from oscillatory at
small mass ratios~largev0) to overdamped at larger mass
ratios ~small v0). However, the infinite mass limit can be
either oscillatory or purely damped depending on the cou-
pling parametersG andq0 /q, as indicated in~18!. This com-
plex behavior of the modes is illustrated in Fig. 8 for
G50.2 andq0 /q520. These values correspond to strong
coupling (q0G/q54) and largev0 whenm0 /m51. Thus at
smallm0 /m there are two complex conjugate modes and one
real mode. Asm0 /m increases the modes become over-
damped with three real modes. Finally, because of the strong
coupling the large mass limit crosses over again to a pair of
complex conjugate modes; the third real mode vanishes in
this limit.

IV. DISCUSSION

The simple model for electric field dynamics presented
here is based on the exact representation~5! for impurity ion
velocity response,D(t), as that for a viscoelastic medium.
The approximation~7! provides a practical expression in
terms of the oscillation frequencyv0, the effective damping
constantg, and the viscoelastic relaxation timet5l21.
These parameters are fixed by the first four time derivatives
of D(t) and its time integral~diffusion constant!. The elec-

tric field autocorrelation function follows directly as the sec-
ond derivative and therefore is governed by the same three
modes. The qualitative behavior of these modes and the elec-
tric field autocorrelation function is as follows. When the
viscous relaxation timet is small ~small G and q0 /q) the
correlation function is dominated by two exponentials ac-
cording to ~10!. Under these same conditionsg/v0 can be
large and the two exponentials give real positive decay at
short times crossing over to real negative decay at larger
times. At the opposite extreme of largeG and q0 /q, the
damping is weak and two of the modes are complex conju-
gate pairs leading to oscillatory behavior inC(t).

Since this model appears to provide a semiquantitative
description of the electric field dynamics, it can be used to
interpret and extract information from computer simulation
data. For example, it is possible to treat the self-diffusion
coefficient as a free parameter to fit the model to the data,
and hence determine the diffusion coefficient. In principle,
this is better done using the velocity autocorrelation function
and the Green-Kubo relation~8!. However, as seen in Figs. 2
and 3, the velocity autocorrelation function is slowly decay-
ing and its time integral requires long simulation times. Al-
ternatively,D can be determinedapproximatelyas a fitting
parameter to match the model to the shorter time simulation
data forC(t). Since the model is not exact, the diffusion
coefficient determined in this way is only an estimate. We
have applied this approach for conditions under which we
expect the disconnected approximation to be accurate and
found good agreement. As the interval over which the best fit
is determined is not prescribed, we have also considered de-
termination ofD from the timet0 at whichC(t) first van-
ishes. Such a point always exists since the time integral of
C(t) vanishes. The analytic expression forC(t0 ,D)50 from
our model is solved forD using t0 from simulation data.
Table II ~see also Fig. 9! shows a comparison of results
obtained in this way with those from the disconnected ap-
proximation for several values ofq/q0 at G55. The agree-
ment is quite reasonable. The value of this approach lies in
conditions for which the disconnected approximation cannot
be trusted and for which simulation times would be prohibi-
tively large. In many applications~e.g., spectral line broad-
ening by complex atoms@17#! only estimates of field relax-
ation times are important. It is tempting to chooset0 as the
characteristic time forC(t). However, it is seen from~8! that
bm0D is the characteristic time forD(t), and consequently
gives a correlation time forC(t) as well. When it is signifi-
cantly larger thant0 ~e.g., strong coupling!, bm0D provides
the proper time scale and our model provides a simple means
for its calculation from simulation data.

FIG. 8. Solutions to Eq.~15! for the model of screened interac-
tion with G50.2, k51, andq0 /q520. Solid lines represent real
parts of solutions, dashed lines, imaginary parts.

TABLE II. Diffusion coefficients found from the disconnected
approximation (D

*
DA) and molecular dynamics~MD! simulations

(D
*
MD) for the plasma conditionsG55 andk51. Impurity mass

m05`.

q0 /q D
*
DA D

*
MD

0.2 1.143 1.19
0.5 0.463 0.448
1 0.277 0.248
2 0.202 0.157
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APPENDIX A: DERIVATION OF THE MODEL

Formally exact equations for the correlation matrix con-
structed from the impurity ion velocityv0 and the electric
field E can be derived by the projection operator method.
This method is described in detail elsewhere@18,15# so only
the features relevant for the present application are given
here.

Let ya denote the matrix whose components arev0 and
E,

ya⇒~v0 ,E…. ~A1!

A projection operatorP is defined for arbitrary phase
functionX by

PX[yagab
21^ybX&, gab[^yayb&, ~A2!

where a summation over repeated Greek labels is assumed,
and the brackets denote an equilibrium Gibbs ensemble av-
erage. The matrix of correlation functions is defined by

Cab~ t ![^ya~ t !yb&. ~A3!

The dot in ~A3! denotes a vector product of the associated
elements ofya . The dynamics ofya(t) is generated by the
Liouville operatorL,

ya~ t ![eLtya , LX[$X,H%. ~A4!

HereH is the Hamiltonian and$,% denotes Poisson brackets
~the corresponding quantum generalization is obtained in a

straightforward manner!. The projection operator method
then leads to the following exact equations forCab(t):

]

]t
Cab~ t !1VasCsb~ t !1E

0

t

dtMas~ t2t!Csb~t!50,

~A5!

Vab5^yaLys&gsb
21 , Mab~ t !5^~Lya!eQLQtLys&gsb

21 ,
~A6!

with Q[12P in the last equality.
These results simplify considerably for the choice~A1!

made here,

gab5dabgaa , g115^v0
2&, g225^E2&, ~A7!

V115V2250, V1252q0 /m0 ,
~A8!

V215~q0 /m0!^E
2&/^v0

2&,

M11~ t !5M12~ t !5M21~ t !50. ~A9!

The proof of these results is straightforward and will not be
given here. The formal equations~A5! now become

]

]t
C1b~ t !5~q0 /m0!C2b~ t !,

]

]t
C2b~ t !1~m0v0

2/q0!C1b~ t !1E
0

t

dtM22~ t2t!C2b~t!50,

~A10!

wherev0
2[q0

2^E2&/m0
2^v0

2&. Substituting the first equation of
~A10! into the second leads to

S ]2

]t2
1v0

2DD~ t !1E
0

t

dtM ~ t2t!
]

]t
D~t!50. ~A11!

This is the equation used in Sec. II, with the definitions
D(t)[^v(t)•v0&/^v0

2& andM (t)[M22(t). The initial value,
M (0), given in ~6! follows directly from the definition~A6!.

APPENDIX B: EVALUATION OF v0 AND v1

Consider firstv0 defined by~6!,

v0
25~bq0

2/3m0!^E
2&52~bq0/3m0!^E•“0U&, ~B1!

whereU is the potential energy of interaction between the
impurity ion and the surrounding plasma. This same poten-
tial energy also occurs in the Gibbs distribution so the po-
tential energy term in~B1! can be represented by the gradient
operating on the Gibbs distribution. Then an integration by
parts gives

v0
252~q0/3m0!^¹0•E&. ~B2!

At this point a distinction must be made between the cases of
Coulomb and screened Coulomb interactions. For the Cou-
lomb case there is a contribution to~B2! from the back-
ground field whereas this is zero for the screened case,

FIG. 9. Diffusion coefficient as a function ofq0 /q for plasma
coupling G55 and screening parameterk51. Points: values of
D* found from MD simulations.
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“0•Eb52(
a

4pnaqa ~Coulomb!, ~B3!

¹0•Eb50 ~screened!. ~B4!

Then ~B1! leads to the two results

v0
25

1

3(a 4pnaqaq0 /m0 ~Coulomb!, ~B5!

v0
252

1

3(a ~naq0 /m0!E dr¹•ea~r !ga~r ! ~screened!,

~B6!

wherega(r ) is the radial distribution function for the prob-
ability to find a plasma ion of speciesa at a distancer from
the impurity ion. This contribution vanishes for the Coulomb
case since¹–ea(r ) is proportional to ad function at r50 in
the Coulomb case andga(0)50. The above results hold in
the thermodynamic limit.

Consider next the frequencyv1 defined by~6!,

v1
25~bq0

2/3m0v0
2!^E2&5~q0

2/3m0
2v0

2!$^@]Ei /]r 0 j #
2&%

1(
a

(
k51

Na

~m0 /ma!^@]ea i~r k2r0!/]r 0 j #
2&. ~B7!

To evaluate the first term on the right side of~B7! write the
field asE5E81Eb and note that the uniform background is
isotropic,]Ebi /]r 0 j5

1
3d i j“0•Eb , so

^@]Ei /]r 0 j #
2&5^@]Ei

8/]r 0 j #
2&1~“0•Eb!

2

12~“0•Eb!^“0•E8&.

Use of ~B2! for the Coulomb case then gives

^@]Ei /]r 0 j #
2&5^@]Ei8/]r 0 j #

2&13~m0v0
2/q0!

2. ~B8!

With this result~B7! becomes

v1
25v0

21~q0
2/3m0

2v0
2!(

a
~nam0 /ma!E dr @]ea i~r !/]r j #

2ga~r !1~q0
2/3m0

2v0
2!(

a
(
s

nansE drdr 8@]ea i /]r j #@]es i /]r #

3$gas
~3!~r ,r 8!2ga~r !gs~r 8!%, ~B9!

wherema[m0ma /(m01ma) is the reduced mass.
Repeating this analysis for the screened Coulomb case leads to

v1
25~q0

2/3m0
2v0

2!(
a

~nam0 /ma!E dr @]ea i~r !/]r j #
2ga~r !1~9v0

2!21H(
a

~naq0 /m0!E dr¹–ea~r !ga~r !J 2
1~q0/3m0v0!

2(
a

(
s

nansE drdr 8@]ea i /]r j #@]es i /]r #$gas
~3!~r ,r 8!2ga~r !gs~r 8!%.

The second term can be simplified using~B6! to give the final result,

v1
25v0

21~q0
2/3m0

2v0
2!(

a
~nam0 /ma!E dr @]ea i~r !/]r j #

2ga~r !1~q0
2/3m0

2v0
2!(

a
(
s

nansE drdr 8@]ea i /]r j #@]es i /]r #

3$gas
~3!~r ,r 8!2ga~r !gs~r 8!% ~screened!. ~B10!

Thus the functional dependence ofv1 on the fields andv0 is
the same for Coulomb and screened Coulomb cases.

These results are still exact. The calculations of the text
are based on two approximations. The first is neglect of the
last term in~B9! and ~B10!. The second is the use of the
HNC integral equation to evaluate the radial distribution
function. Furthermore, attention is limited to a one compo-
nent plasma. In this case~B5! and ~B6! can be written

v0
25

1

3 Smq0
m0q

Dvp
2I 0 , ~B11!

I 0[11E
0

`

drrk2e2kr@g~r !21#, vp
2[4pnq2/m,

~B12!

which applies for both the Coulomb (k50) and the screened
(kÞ0) cases. Similarly,~B9! and ~B10! become

v1
25v0

2$11~m0 /mI 0
2!I 1%, ~B13!

I 1[E
0

`

drr24e22kr@6112kr110~kr !214~kr !3

1~kr !4#g~r !. ~B14!

It is understood that the integration variables and screening
lengthk21 of ~B12! and~B14! are in units of the ion sphere
radius,a[(3/4pn)1/3. With these results, the expression~9!
for l becomes
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l5I 1 /~bmDI 0
2!. ~B15!

APPENDIX C: EVALUATION OF D

The self-diffusion coefficient is given in terms of the ve-
locity autocorrelation function~8!. The model described in
Sec. II for D(t) cannot be used to calculateD since ~8!
yields an identity in that case, by construction. Instead, an
approximate kinetic theory is used to obtain the self-
diffusion coefficient independently.

The kinetic theory is introduced by representing the ve-
locity autocorrelation function as

D~ t !5E dv0f~v0!v0•F~v0 ,t !, ~C1!

where f0(v0) is the Maxwell-Boltzmann distribution and
F(v0 ,t) obeys the first Bogoliubov-Born-Green-Kirkwood-
Yuon ~BBGKY! hierarchy equation withF(v0,0)5v0. The
projection operator method can be used to obtain a formally
exact kinetic equation forF in the form

]

]t
F~v0 ,t !5E

0

t

dtK̂~ t2t!F~v0 ,t!50. ~C2!

Here K̂(t) is the collision operator, and is an operator
over functions ofv0,

K̂~ t ! f ~v0![E dvK~ t;v0 ,v! f ~v!. ~C3!

The projection operator method provides the form of the
function, but it is not required at this point. The self-
diffusion coefficient can be expressed in terms ofK̂(t) by
Laplace transformation of~C3! and use of~C1! in ~8!,

D5
1

3E dv0f~v0!v0–V~v0!, ~C4!

whereV(v0) is the solution to the integral equation,

K̃~0!V~v0!5v0 , K̃~z![E
0

`

dt e2ztK̂~ t !. ~C5!

Thus the Laplace transform of the formal collision operator
determines the self-diffusion coefficient.

These results are still exact. We now introduce two types
of approximations. The first is an approximate evaluation of
D in terms of matrix elements of theK̃(0). To bemore
explicit consider the expansion ofV(v0) in terms of a com-
plete set of functions$cs%,

V~v0!5(
s

`

cs~v0!~cs ,V!,

~a,b![E dv0f~v0!a* ~v0!b~v0!. ~C6!

The second expression of~C6! defines the scalar product in
the expansion ofV(v0). The complete set of functions can be

generated from polynomials inv0 using the Schmidt process.
The first few are given explicitly by

c1~v0!51, c2~v0!561/2@bm0v0
223#,

c i~v0!5~bm0!
1/2v0i ~ i53,4,5!. ~C7!

If only these first five functions of$cs% are retained in the
representation~C6!, then ~C4! and ~C5! lead directly to the
first approximation forD,

bm0D→K33
21 , K33[„c3 ,K̃~0!c3…. ~C8!

An improvement is obtained by retaining the first eight func-
tions, but the analysis here has been limited to this simplest
first approximation,~C8!.

Our second approximation refers to the collision operator
K̃(0). Here we use the ’’disconnected approximation’’@9#
known to be quite accurate for both neutral and charged flu-
ids even under conditions of strong coupling. In this approxi-
mationK33 is given by

K335~6pm0!
21E

0

`

dk k4ỹ0~k!c0~k!

3E
2`

`

dvS~k,v!S~s!~k,v!, ~C9!

where S(k,v) is the dynamic structure factor for density
fluctuations in the OCP,S(s)(k,v) is the self-structure factor
for the impurity ion, ỹ0(k) is the Fourier transformed pair
potential for interaction of the impurity with an ion of the
OCP, andc̃0(k) is the corresponding Fourier transformed
direct correlation function. The corresponding self-diffusion
coefficient in this approximation is

D215~b/6p!21E
0

`

dk k4ỹ~k!c~k!

3E
2`

`

dvS~k,v!S~s!~k,v!. ~C10!

It remains to specify models forS(k,v)and S(s)(k,v).
The simplest choice forS(k,w) applicable at strong coupling
is the mean field model,

S~k,v!

5
2

brv

I 9~k!

@12b21c̃~k!I 8~k,v!#21@b21c̃~k!I 9~k,v#2
,

~C11!

whereI 8(k,v) and I 9(k,v) are the real and imaginary parts
of the function,

I ~k,v![ lim
e→0

bnE dvf~v !~2 iv1 ik•v1e!21.

~C12!

Finally, a Gaussian approximation that interpolates between
the short time free particle limit and the long time diffusion
limit is used forS(s)(k,v),
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S~s!~k,v!5E
0

`

dt cos~vt !

3exp~2Dk2t1Dk2h21@12e2ht# !,

~C13!

whereh[1/bmD. For the conditions considered here results
based on~C13! differ very little from those obtained using
the ideal gas form forS0

(s)(k,v),

S0
~s!~k,v!→A p

sk
e2~v/sk!2, ~C14!

wheres252/bm.

APPENDIX D: M 0˜` LIMIT

The electric field autocorrelation function simplifies con-
siderably in the limit of a very massive ion (m0 /m@1). This
is relevant for an impurity ion in a OCP of electrons. Con-
sider first some exact results that follow from the projection
operator formalism of Appendix A for finitem0,

D̃~z!5@z21zM̃~z!1v0
2#21@z1M̃ ~z!#, ~D1!

C̃~z!5z@z21zM̃~z!1v0
2#21. ~D2!

HereD̃(z) andC̃(z) are the Laplace transforms ofD(t) and
C(t), respectively. The self-diffusion coefficient is related to
D̃(0) through~8!,

bm0D5 lim
z→0

D̃~z!5 lim
z→0

M̃ ~z!/v0
2 , ~D3!

while C̃(0)50. Now consider the limit ofm0→` first, fol-
lowed by z→0. In this casebm0v0

2→(b2q0
2/3)^E2& and

~D3! becomes, instead,

D5 lim
z→0

lim
m0→`

3M̃ ~z!~b2q0
2^E2&!21. ~D4!

On the other hand,~D2! gives, for the infinite mass limit of
the electric field autocorrelation function,

C̃~z!→@z1M̃ ~z!#21. ~D5!

Comparison of~D4! and ~D5! shows an alternative Green-
Kubo relation that is applicable only for infinitem0,

D215b2q0
2^E2& lim

z→0
lim

m0→`

C̃~z!, ~D6!

where the order of the limits is important, since
limz→0C̃(z)50 for any finite mass.

For the approximate model here these results translate to

v050, v1
25

q0I 1
3qI0

vp
2 , l5

I 1
bmDI0

2 . ~D7!

The self-diffusion coefficient in~D7! is obtained from~C10!,
where the self-structure factor becomes ad function at
v50 in this limit, giving

D215~b/6p!21E
0

`

dk k4y~k!c~k!S~k,0!. ~D8!

The electric field autocorrelation function is obtained
from ~14! and ~15!,

C~ t !5~Z12Z2!21$~l1Z1!eZ1t2~l1Z2!eZ2t%,
~D9!

Z65
1

2
l$216@124~v1 /l!2#1/2%. ~D10!

It is easily verified that

C~0!5E
0

`

dtC~ t !5l/Z1Z25l/v1
2

5D21~3q/q0bmvp
2I 0!. ~D11!

This is consistent with the Green-Kubo relation~D6!.
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